Clustering with Constraints
نویسنده
چکیده
The area of clustering with constraints makes use of hints or advice in the form of constraints to aid or bias the clustering process. The most prevalent form of advice are conjunctions of pair-wise instance level constraints of the form must-link (ML) and cannot-link (CL) which state that pairs of instances should be in the same or different clusters respectively. Given a set of points P to cluster and a set of constraints C, the aim of clustering with constraints is to use the constraints to improve the clustering results. Constraints have so far being used in two main ways: a) Writing algorithms that use a standard distance metric but attempt to satisfy all or as many constraints as possible and b) Using the constraints to learn a distance function that is then used in the clustering algorithm.
منابع مشابه
Generating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملA Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملA novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملAn Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks
High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...
متن کاملClustering with Propagated Constraints
Title of Thesis: Clustering with Propagated Constraints Eric Robert Eaton, Master of Science, 2005 Thesis directed by: Dr. Marie desJardins, Assistant Professor Department of Computer Science and Electrical Engineering Background knowledge in the form of constraints can dramatically improve the quality of generated clustering models. In constrained clustering, these constraints typically specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009